Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475929

RESUMO

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Transtornos Cerebrovasculares , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Pericitos/patologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Doença de Alzheimer/patologia , Transtornos Cerebrovasculares/complicações
2.
EMBO Mol Med ; 16(4): 678-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467840

RESUMO

Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , DNA/metabolismo , Citosol/metabolismo , Imunidade Inata
3.
Glia ; 71(7): 1607-1625, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929654

RESUMO

Acute ischemic stroke (AIS), one of the leading causes of mortality worldwide, is characterized by a rapid inflammatory cascade resulting in exacerbation of ischemic brain injury. Microglia are the first immune responders. However, the role of postischemic microglial activity in ischemic brain injury remains far from being fully understood. Here, using the transgenic mouse line CX3 CR1creER :R26iDTR to genetically ablate microglia, we showed that microglial deletion exaggerated ischemic brain injury. Associated with this worse outcome, there were increased neutrophil recruitment, microvessel blockade and blood flow stagnation in the acute phase, accompanied by transcriptional upregulation of chemokine (C-X-C motif) ligand 1 (CXCL1). Our study showed that microglial interleukin-1 receptor antagonist (IL-1RA) suppressed astrocytic CXCL1 expression induced by oxygen and glucose deprivation and inhibited neutrophil migration. Furthermore, neutralizing antibody therapy against CXCL1 or the administration of recombinant IL-1RA protein reduced brain infarct volume and improved motor coordination performance of mice after ischemic stroke. Our study suggests that microglia protect against acute ischemic brain injury by secreting IL-1RA to inhibit astrocytic CXCL1 expression, which reduces neutrophil recruitment and neutrophil-derived microvessel occlusion.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , AVC Isquêmico/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacologia , Microglia/metabolismo , Infiltração de Neutrófilos/fisiologia , Lesões Encefálicas/metabolismo , Camundongos Transgênicos , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo
4.
Sci Transl Med ; 15(684): eabm6543, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812346

RESUMO

Radiation-induced brain injury (RIBI) is a debilitating sequela after radiotherapy to treat head and neck cancer, and 20 to 30% of patients with RIBI fail to respond to or have contraindications to the first-line treatments of bevacizumab and corticosteroids. Here, we reported a Simon's minmax two-stage, single-arm, phase 2 clinical trial (NCT03208413) to assess the efficacy of thalidomide in patients with RIBI who were unresponsive to or had contraindications to bevacizumab and corticosteroid therapies. The trial met its primary endpoint, with 27 of 58 patients enrolled showing ≥25% reduction in the volume of cerebral edema on fluid-attenuated inversion recovery-magnetic resonance imaging (FLAIR-MRI) after treatment (overall response rate, 46.6%; 95% CI, 33.3 to 60.1%). Twenty-five (43.1%) patients demonstrated a clinical improvement based on the Late Effects Normal Tissues-Subjective, Objective, Management, Analytic (LENT/SOMA) scale, and 36 (62.1%) experienced cognitive improvement based on the Montreal Cognitive Assessment (MoCA) scores. In a mouse model of RIBI, thalidomide restored the blood-brain barrier and cerebral perfusion, which were attributed to the functional rescue of pericytes secondary to elevation of platelet-derived growth factor receptor ß (PDGFRß) expression by thalidomide. Our data thus demonstrate the therapeutic potential of thalidomide for the treatment of radiation-induced cerebral vasculature impairment.


Assuntos
Lesões Encefálicas , Lesões por Radiação , Animais , Camundongos , Talidomida , Barreira Hematoencefálica/patologia , Bevacizumab/uso terapêutico , Encéfalo/patologia , Lesões por Radiação/patologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia
5.
Neuron ; 111(5): 696-710.e9, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603584

RESUMO

The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.


Assuntos
Lesões Encefálicas , Microglia , Animais , Camundongos , Microglia/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Lesões Encefálicas/patologia , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL
6.
Stroke ; 53(12): 3751-3762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305312

RESUMO

BACKGROUND: Emerging evidence highlighted vascular injury in aggravating radiation-induced brain injury (RIBI), a common complication of radiotherapy. This study aimed to delineate the pathological feature of cerebral small vessel and investigate the functional roles of Notch signaling in RIBI. METHODS: Brain tissue and functional MRI from RIBI patients were collected and analyzed for radiation-induced vasculopathy. A RIBI mouse model was induced by a single dose of 30-Gy cranial irradiation. Vascular morphology, pulsatility, and reactivity to pharmacological interventions, such as nimodipine and 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, were monitored by 2-photon imaging in mice at 6 weeks postirradiation. Western blot, real-time quantitative PCR, immunofluorescence staining, and behavioral tests were performed. The effect of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester, a Notch inhibitor, was used to investigate the vascular pathogenesis of RIBI mouse model. RESULTS: Morphologically, radiation resulted in vascular malformation featured by focal contractile rings together with general stenosis. Functionally, radiation also led to hypoperfusion, attenuated vascular pulsatility, and decreased dilation to nimodipine and 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid. Mechanically, Notch activation and increased expression of α-SMA protein were found in both surgical specimens of RIBI patients and the irradiated mice. Importantly, Notch inhibition by N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester significantly alleviated cerebral hypoperfusion, vasculopathy, and cognitive deficits in the RIBI mouse model. CONCLUSIONS: Radiation-induced cerebral vasculopathy showed bead-like shape and increased contractile state. Inhibition of Notch signaling by N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester effectively attenuated vasculopathy and relieved cognitive impairment, suggesting Notch signaling as a therapeutic target for the treatment of RIBI.


Assuntos
Lesões Encefálicas , Transtornos Cerebrovasculares , Lesões por Radiação , Animais , Camundongos , Nimodipina , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Transtornos Cerebrovasculares/complicações , Lesões Encefálicas/patologia , Ésteres/metabolismo , Ésteres/farmacologia , Receptores Notch/metabolismo
7.
J Neuroinflammation ; 19(1): 231, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131309

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. METHODS: Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR-Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. RESULTS: Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. CONCLUSIONS: Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI.


Assuntos
Lesões Encefálicas , Proteína HMGB1 , Animais , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Proteína HMGB1/metabolismo , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Pregabalina/metabolismo , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Qualidade de Vida , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
Neural Regen Res ; 17(10): 2253-2259, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259846

RESUMO

Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.

9.
FASEB J ; 34(10): 13361-13375, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851721

RESUMO

Radiotherapy is one of the most effective treatments for head and neck tumors. However, delayed radiation-induced brain necrosis (RN) remains a serious issue due to the lack of satisfying prevention and effective treatment. The pathological role of radiation in the delayed onset of brain necrosis is still largely unknown, and the traditional animal model of whole brain irradiation, although being widely used, does not produce reliable and localized brain necrosis mimicking clinical features of RN. In this study, we demonstrated a successful RN mouse model using optimized gamma knife irradiation in male C57BL/6 mice. On the premise that brain necrosis started to appear at 6 weeks postirradiation in our RN model, as confirmed by both MRI and histopathological examinations, we systematically examined different time points before the onset of RN for the histopathological changes and biochemical indicators. Our initial results demonstrated that in the ipsilateral hemisphere of the irradiated brains, a significant decrease in neuronal numbers that occurred at 4 weeks and a sustained increase in TNF-α, iNOS, and other inflammatory cytokines beginning at 1-week postirradiation. Changes of cell morphology and cell numbers of both microglia and astrocytes occurred as early as 1-week postirradiation, and intervention by bevacizumab administration resulted in reduced microglia activation and reduction of radiation-induced lesion volume, indicating that chronic glial activation may result in subsequent elevation of inflammatory factors, which led to the delayed onset of neuronal loss and brain necrosis. Since C57BL/6 is the most widely used strain of genetic engineered mouse model, our data provide an invaluable platform for the mechanistic study of RN pathogenesis, identification of potential imaging and biological biomarkers, and the development of therapeutic treatment for the disease.


Assuntos
Astrócitos , Bevacizumab , Encéfalo , Raios gama/efeitos adversos , Microglia , Lesões Experimentais por Radiação , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Bevacizumab/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Necrose , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...